Soft-In Soft-Output Detection in the Presence of Parametric Uncertainty via the Bayesian EM Algorithm
نویسندگان
چکیده
We investigate the application of the Bayesian expectation-maximization (BEM) technique to the design of soft-in soft-out (SISO) detection algorithms for wireless communication systems operating over channels affected by parametric uncertainty. First, the BEM algorithm is described in detail and its relationship with the well-known expectation-maximization (EM) technique is explained. Then, some of its applications are illustrated. In particular, the problems of SISO detection of spread spectrum, singlecarrier and multicarrier space-time block coded signals are analyzed. Numerical results show that BEM-based detectors perform closely to the maximum likelihood (ML) receivers endowed with perfect channel state information as long as channel variations are not too fast.
منابع مشابه
A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملPothole Detection by Soft Computing
Subject- Potholes on roads are regarded as serious problems in the transportation domain and ignoring them leads to the increase of accidents, traffic, vehicle fuel consumption and waste of time and energy. As a result, pothole detection has attracted researchers’ attention and different methods have been presented for it up to now. Background- The major part of previous research is based on i...
متن کاملAdaptive soft-input soft-output algorithms for iterative detection with parametric uncertainty
The soft-input soft-output (SISO) module is the basic building block for established iterative detection (ID) algorithms for a system consisting of a network of finite state machines. The problem of performing ID for systems having parametric uncertainty has received relatively little attention in the open literature. Previously proposed adaptive SISO (A-SISO) algorithms are either based on an ...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005